Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Possible mechanisms for the generation of phenyl glycoside-type lignin-carbohydrate linkages in lignification with monolignol glucosides.

Identifieur interne : 000186 ( Main/Exploration ); précédent : 000185; suivant : 000187

Possible mechanisms for the generation of phenyl glycoside-type lignin-carbohydrate linkages in lignification with monolignol glucosides.

Auteurs : Yasuyuki Miyagawa [Japon] ; Yuki Tobimatsu [Japon] ; Pui Ying Lam [Japon] ; Takahito Mizukami [Japon] ; Sayaka Sakurai [Japon] ; Hiroshi Kamitakahara [Japon] ; Toshiyuki Takano [Japon]

Source :

RBID : pubmed:32623768

Abstract

The existence and formation of covalent lignin-carbohydrate (LC) linkages in plant cell walls has long been a matter of debate in terms of their roles in cell wall development and biomass use. Of the various putative LC linkages proposed to date, evidence of the native existence and formation mechanism of phenyl glycoside (PG)-type LC linkages in planta is particularly scarce. The present study aimed to explore previously overlooked mechanisms for the formation of PG-type LC linkages through the incorporation of monolignol glucosides, which are possible lignin precursors, into lignin polymers during lignification. Peroxidase-catalyzed lignin polymerization of coniferyl alcohol in the presence of coniferin and syringin in vitro resulted in the generation of PG-type LC linkages in synthetic lignin polymers, possibly via nucleophilic addition onto quinone methide (QM) intermediates formed during polymerization. Biomimetic lignin polymerization of coniferin via the β-glucosidase/peroxidase system also resulted in the generation of PG-type as well as alkyl glycoside-type LC linkages. This occurred via non-enzymatic QM-involving reactions and also via enzymatic transglycosylations involving β-glucosidase, which was demonstrated by in-depth structural analysis of the synthetic lignins by two-dimensional NMR. We collected heteronuclear single-quantum coherence (HSQC) NMR for native cell wall fractions prepared from pine (Pinus taeda), eucalyptus (Eucalyptus camaldulensis), acacia (Acacia mangium), poplar (Populus × eurarnericana) and bamboo (Phyllostachys edulis) wood samples, which exhibited correlations, albeit at low levels, that were well matched with those of the PG-type LC linkages in synthetic lignins incorporating monolignol glucosides. Overall, our results provide a molecular basis for feasible mechanisms for the generation of PG-type LC linkages from monolignol glucosides and further substantiates their existence in planta.

DOI: 10.1111/tpj.14913
PubMed: 32623768


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Possible mechanisms for the generation of phenyl glycoside-type lignin-carbohydrate linkages in lignification with monolignol glucosides.</title>
<author>
<name sortKey="Miyagawa, Yasuyuki" sort="Miyagawa, Yasuyuki" uniqKey="Miyagawa Y" first="Yasuyuki" last="Miyagawa">Yasuyuki Miyagawa</name>
<affiliation wicri:level="4">
<nlm:affiliation>Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tobimatsu, Yuki" sort="Tobimatsu, Yuki" uniqKey="Tobimatsu Y" first="Yuki" last="Tobimatsu">Yuki Tobimatsu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lam, Pui Ying" sort="Lam, Pui Ying" uniqKey="Lam P" first="Pui Ying" last="Lam">Pui Ying Lam</name>
<affiliation wicri:level="4">
<nlm:affiliation>Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mizukami, Takahito" sort="Mizukami, Takahito" uniqKey="Mizukami T" first="Takahito" last="Mizukami">Takahito Mizukami</name>
<affiliation wicri:level="4">
<nlm:affiliation>Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sakurai, Sayaka" sort="Sakurai, Sayaka" uniqKey="Sakurai S" first="Sayaka" last="Sakurai">Sayaka Sakurai</name>
<affiliation wicri:level="4">
<nlm:affiliation>Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kamitakahara, Hiroshi" sort="Kamitakahara, Hiroshi" uniqKey="Kamitakahara H" first="Hiroshi" last="Kamitakahara">Hiroshi Kamitakahara</name>
<affiliation wicri:level="4">
<nlm:affiliation>Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Takano, Toshiyuki" sort="Takano, Toshiyuki" uniqKey="Takano T" first="Toshiyuki" last="Takano">Toshiyuki Takano</name>
<affiliation wicri:level="4">
<nlm:affiliation>Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32623768</idno>
<idno type="pmid">32623768</idno>
<idno type="doi">10.1111/tpj.14913</idno>
<idno type="wicri:Area/Main/Corpus">000211</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000211</idno>
<idno type="wicri:Area/Main/Curation">000211</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000211</idno>
<idno type="wicri:Area/Main/Exploration">000211</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Possible mechanisms for the generation of phenyl glycoside-type lignin-carbohydrate linkages in lignification with monolignol glucosides.</title>
<author>
<name sortKey="Miyagawa, Yasuyuki" sort="Miyagawa, Yasuyuki" uniqKey="Miyagawa Y" first="Yasuyuki" last="Miyagawa">Yasuyuki Miyagawa</name>
<affiliation wicri:level="4">
<nlm:affiliation>Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tobimatsu, Yuki" sort="Tobimatsu, Yuki" uniqKey="Tobimatsu Y" first="Yuki" last="Tobimatsu">Yuki Tobimatsu</name>
<affiliation wicri:level="4">
<nlm:affiliation>Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lam, Pui Ying" sort="Lam, Pui Ying" uniqKey="Lam P" first="Pui Ying" last="Lam">Pui Ying Lam</name>
<affiliation wicri:level="4">
<nlm:affiliation>Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mizukami, Takahito" sort="Mizukami, Takahito" uniqKey="Mizukami T" first="Takahito" last="Mizukami">Takahito Mizukami</name>
<affiliation wicri:level="4">
<nlm:affiliation>Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sakurai, Sayaka" sort="Sakurai, Sayaka" uniqKey="Sakurai S" first="Sayaka" last="Sakurai">Sayaka Sakurai</name>
<affiliation wicri:level="4">
<nlm:affiliation>Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kamitakahara, Hiroshi" sort="Kamitakahara, Hiroshi" uniqKey="Kamitakahara H" first="Hiroshi" last="Kamitakahara">Hiroshi Kamitakahara</name>
<affiliation wicri:level="4">
<nlm:affiliation>Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Takano, Toshiyuki" sort="Takano, Toshiyuki" uniqKey="Takano T" first="Toshiyuki" last="Takano">Toshiyuki Takano</name>
<affiliation wicri:level="4">
<nlm:affiliation>Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Plant journal : for cell and molecular biology</title>
<idno type="eISSN">1365-313X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The existence and formation of covalent lignin-carbohydrate (LC) linkages in plant cell walls has long been a matter of debate in terms of their roles in cell wall development and biomass use. Of the various putative LC linkages proposed to date, evidence of the native existence and formation mechanism of phenyl glycoside (PG)-type LC linkages in planta is particularly scarce. The present study aimed to explore previously overlooked mechanisms for the formation of PG-type LC linkages through the incorporation of monolignol glucosides, which are possible lignin precursors, into lignin polymers during lignification. Peroxidase-catalyzed lignin polymerization of coniferyl alcohol in the presence of coniferin and syringin in vitro resulted in the generation of PG-type LC linkages in synthetic lignin polymers, possibly via nucleophilic addition onto quinone methide (QM) intermediates formed during polymerization. Biomimetic lignin polymerization of coniferin via the β-glucosidase/peroxidase system also resulted in the generation of PG-type as well as alkyl glycoside-type LC linkages. This occurred via non-enzymatic QM-involving reactions and also via enzymatic transglycosylations involving β-glucosidase, which was demonstrated by in-depth structural analysis of the synthetic lignins by two-dimensional NMR. We collected heteronuclear single-quantum coherence (HSQC) NMR for native cell wall fractions prepared from pine (Pinus taeda), eucalyptus (Eucalyptus camaldulensis), acacia (Acacia mangium), poplar (Populus × eurarnericana) and bamboo (Phyllostachys edulis) wood samples, which exhibited correlations, albeit at low levels, that were well matched with those of the PG-type LC linkages in synthetic lignins incorporating monolignol glucosides. Overall, our results provide a molecular basis for feasible mechanisms for the generation of PG-type LC linkages from monolignol glucosides and further substantiates their existence in planta.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32623768</PMID>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-313X</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Jul</Month>
<Day>04</Day>
</PubDate>
</JournalIssue>
<Title>The Plant journal : for cell and molecular biology</Title>
<ISOAbbreviation>Plant J</ISOAbbreviation>
</Journal>
<ArticleTitle>Possible mechanisms for the generation of phenyl glycoside-type lignin-carbohydrate linkages in lignification with monolignol glucosides.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/tpj.14913</ELocationID>
<Abstract>
<AbstractText>The existence and formation of covalent lignin-carbohydrate (LC) linkages in plant cell walls has long been a matter of debate in terms of their roles in cell wall development and biomass use. Of the various putative LC linkages proposed to date, evidence of the native existence and formation mechanism of phenyl glycoside (PG)-type LC linkages in planta is particularly scarce. The present study aimed to explore previously overlooked mechanisms for the formation of PG-type LC linkages through the incorporation of monolignol glucosides, which are possible lignin precursors, into lignin polymers during lignification. Peroxidase-catalyzed lignin polymerization of coniferyl alcohol in the presence of coniferin and syringin in vitro resulted in the generation of PG-type LC linkages in synthetic lignin polymers, possibly via nucleophilic addition onto quinone methide (QM) intermediates formed during polymerization. Biomimetic lignin polymerization of coniferin via the β-glucosidase/peroxidase system also resulted in the generation of PG-type as well as alkyl glycoside-type LC linkages. This occurred via non-enzymatic QM-involving reactions and also via enzymatic transglycosylations involving β-glucosidase, which was demonstrated by in-depth structural analysis of the synthetic lignins by two-dimensional NMR. We collected heteronuclear single-quantum coherence (HSQC) NMR for native cell wall fractions prepared from pine (Pinus taeda), eucalyptus (Eucalyptus camaldulensis), acacia (Acacia mangium), poplar (Populus × eurarnericana) and bamboo (Phyllostachys edulis) wood samples, which exhibited correlations, albeit at low levels, that were well matched with those of the PG-type LC linkages in synthetic lignins incorporating monolignol glucosides. Overall, our results provide a molecular basis for feasible mechanisms for the generation of PG-type LC linkages from monolignol glucosides and further substantiates their existence in planta.</AbstractText>
<CopyrightInformation>© 2020 Society for Experimental Biology and John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Miyagawa</LastName>
<ForeName>Yasuyuki</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tobimatsu</LastName>
<ForeName>Yuki</ForeName>
<Initials>Y</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-7578-7392</Identifier>
<AffiliationInfo>
<Affiliation>Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lam</LastName>
<ForeName>Pui Ying</ForeName>
<Initials>PY</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-5025-1308</Identifier>
<AffiliationInfo>
<Affiliation>Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mizukami</LastName>
<ForeName>Takahito</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sakurai</LastName>
<ForeName>Sayaka</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kamitakahara</LastName>
<ForeName>Hiroshi</ForeName>
<Initials>H</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-0130-1919</Identifier>
<AffiliationInfo>
<Affiliation>Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Takano</LastName>
<ForeName>Toshiyuki</ForeName>
<Initials>T</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-8244-223X</Identifier>
<AffiliationInfo>
<Affiliation>Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Kyoto, 606-8502, Japan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>16H06198</GrantID>
<Agency>Japan Society for the Promotion of Science</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>20H03044</GrantID>
<Agency>Japan Society for the Promotion of Science</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>07</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Plant J</MedlineTA>
<NlmUniqueID>9207397</NlmUniqueID>
<ISSNLinking>0960-7412</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">cell wall</Keyword>
<Keyword MajorTopicYN="N">lignin-carbohydrate complex</Keyword>
<Keyword MajorTopicYN="N">lignin-carbohydrate linkage</Keyword>
<Keyword MajorTopicYN="N">monolignol glucoside</Keyword>
<Keyword MajorTopicYN="N">nuclear magnetic resonance</Keyword>
<Keyword MajorTopicYN="N">phenyl glycoside</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>10</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>06</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>06</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>7</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>7</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32623768</ArticleId>
<ArticleId IdType="doi">10.1111/tpj.14913</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Adler, E. (1977) Lignin chemistry-past, present and future. Wood Sci. Technol. 11, 169-218.</Citation>
</Reference>
<Reference>
<Citation>Aoki, D., Hanaya, Y., Akita, T., Matsushita, Y., Yoshida, M., Kuroda, K., Yagami, S., Takama, R. and Fukushima, K. (2016) Distribution of coniferin in freeze-fixed stem of Ginkgo biloba L. by cryo-TOF-SIMS/SEM. Sci. Rep. 6, 31525.</Citation>
</Reference>
<Reference>
<Citation>Aoki, D., Okumura, W., Akita, T., Matsushita, Y., Yoshida, M., Sano, Y. and Fukushima, K. (2019) Microscopic distribution of syringin in freeze-fixed Syringa vulgaris stems. Plant Direct, 3, e00155.</Citation>
</Reference>
<Reference>
<Citation>Balakshin, M., Capanema, E., Gracz, H., Chang, H.-M. and Jameel, H. (2011) Quantification of lignin-carbohydrate linkages with high-resolution NMR spectroscopy. Planta, 233, 1097-1110.</Citation>
</Reference>
<Reference>
<Citation>Balakshin, M., Capanema, E. and Berlin, A. (2014) Chapter 4 - Isolation and analysis of lignin-carbohydrate complexes preparations with traditional and advanced methods: a review. In Studies in Natural Products Chemistry (Atta-ur, R., ed). Oxford: Elsevier, pp. 83-115.</Citation>
</Reference>
<Reference>
<Citation>Barros, J., Serk, H., Granlund, I. and Pesquet, E. (2015) The cell biology of lignification in higher plants. Ann. Bot. 115, 1053-1074.</Citation>
</Reference>
<Reference>
<Citation>Bjorkman, A. (1957) Lignin and lignin-carbohydrate complexes. Ind. Eng. Chem. 49, 1395-1398.</Citation>
</Reference>
<Reference>
<Citation>Borchardt, L.G. and Piper, C.V. (1970) A gas chromatographic method for carbohydrates as alditol-acetates. Tappi, 53, 257-260.</Citation>
</Reference>
<Reference>
<Citation>Brennan, M., McLean, J.P., Altaner, C.M., Ralph, J. and Harris, P.J. (2012) Cellulose microfibril angles and cell-wall polymers in different wood types of Pinus radiata. Cellulose, 19, 1385-1404.</Citation>
</Reference>
<Reference>
<Citation>Brunow, G., Sipilä, J. and Mäkelä, T. (1989) On the mechanism of formation of non-cyclic benzyl ethers during lignin biosynthesis. Part 1. The reactivity of β-O-4 quinone methides with phenols and alcohols. Holzforschung, 43, 55-59.</Citation>
</Reference>
<Reference>
<Citation>Cathala, B., Saake, B., Faix, O. and Monties, B. (1998) Evaluation of the reproducibility of the synthesis of dehydrogenation polymer models of lignin. Polym. Degrad. Stabil. 59, 65-69.</Citation>
</Reference>
<Reference>
<Citation>Chou, Y.-E., Schuetz, M., Hoffmann, N., Watanabe, Y., Sibout, R. and Samuels, A.L. (2018) Distribution, mobility, and anchoring of lignin-related oxidative enzymes in Arabidopsis secondary cell walls. J. Exp. Bot. 69, 1849-1859.</Citation>
</Reference>
<Reference>
<Citation>del Río, J.C., Prinsen, P., Cadena, E.M., Martínez, Á.T., Gutiérrez, A. and Rencoret, J. (2016) Lignin-carbohydrate complexes from sisal (Agave sisalana) and abaca (Musa textilis): chemical composition and structural modifications during the isolation process. Planta, 243, 1143-1158.</Citation>
</Reference>
<Reference>
<Citation>del Río, J.C., Rencoret, J., Gutiérrez, A., Elder, T., Kim, H. and Ralph, J. (2020) Lignin monomers from beyond the canonical monolignol biosynthetic pathway: another brick in the wall. ACS Sustain. Chem. Eng. 8, 4997-5012.</Citation>
</Reference>
<Reference>
<Citation>Dima, O., Morreel, K., Vanholme, B., Kim, H., Ralph, J. and Boerjan, W. (2015) Small glycosylated lignin oligomers are stored in Arabidopsis leaf vacuoles. Plant Cell, 27, 695-710.</Citation>
</Reference>
<Reference>
<Citation>Du, X., Pérez-Boada, M., Fernández, C., Rencoret, J., José, C., Jiménez-Barbero, J., Li, J., Gutiérrez, A. and Martínez, A.T. (2014) Analysis of lignin-carbohydrate and lignin-lignin linkages after hydrolase treatment of xylan-lignin, glucomannan-lignin and glucan-lignin complexes from spruce wood. Planta, 239, 1079-1090.</Citation>
</Reference>
<Reference>
<Citation>Erdmann, J. (1866) Ueber die Concretionen in den Birnen. Eur. J. Org. Chem. 138, 1-19.</Citation>
</Reference>
<Reference>
<Citation>Foston, M., Samuel, R., He, J. and Ragauskas, A.J. (2016) A review of whole cell wall NMR by the direct-dissolution of biomass. Green Chem. 18, 608-621.</Citation>
</Reference>
<Reference>
<Citation>Giummarella, N., Zhang, L., Henriksson, G. and Lawoko, M. (2016) Structural features of mildly fractionated lignin carbohydrate complexes (LCC) from spruce. RSC Adv. 6, 42120-42131.</Citation>
</Reference>
<Reference>
<Citation>Giummarella, N., Pu, Y., Ragauskas, A.J. and Lawoko, M. (2019a) A critical review on the analysis of lignin carbohydrate bonds. Green Chem. 21, 1573-1595.</Citation>
</Reference>
<Reference>
<Citation>Giummarella, N., Balakshin, M., Koutaniemi, S., Kärkönen, A. and Lawoko, M. (2019b) Nativity of lignin carbohydrate bonds substantiated by biomimetic synthesis. J. Exp. Bot. 70, 5591-5601.</Citation>
</Reference>
<Reference>
<Citation>Huang, C., Tang, S., Zhang, W., Tao, Y., Lai, C., Li, X. and Yong, Q. (2018) Unveiling the structural properties of lignin-carbohydrate complexes in bamboo residues and its functionality as antioxidants and immunostimulants. ACS Sustain. Chem. Eng. 6, 12522-12531.</Citation>
</Reference>
<Reference>
<Citation>Joseleau, J.-P. and Kesraoui, R. (1986) Glycosidic bonds between lignin and carbohydrates. Holzforschung, 40, 163-168.</Citation>
</Reference>
<Reference>
<Citation>Kang, X., Kirui, A., Dickwella Widanage, M.C., Mentink-Vigier, F., Cosgrove, D.J. and Wang, T. (2019) Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR. Nature Commun. 10, 347.</Citation>
</Reference>
<Reference>
<Citation>Karlen, S.D., Free, H.C., Padmakshan, D., Smith, B.G., Ralph, J. and Harris, P.J. (2018) Commelinid monocotyledon lignins are acylated by p-coumarate. Plant Physiol. 177, 513-521.</Citation>
</Reference>
<Reference>
<Citation>Kim, H. and Ralph, J. (2010) Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d6/pyridine-d5. Org. Biomol. Chem. 8, 576-591.</Citation>
</Reference>
<Reference>
<Citation>Kishimoto, T., Ikeda, T., Karlsson, O., Magara, K. and Hosoya, S. (2002) Reactivity of secondary hydroxyl groups in methyl-β-D-xylopyranoside toward a β-O-4-type quinone methide. J. Wood Sci. 48, 32-37.</Citation>
</Reference>
<Reference>
<Citation>Kondo, R., Iimori, T. and Imamura, H. (1988) Enzymatic synthesis of glucosides of monomeric lignin model compounds with commercial β-glucosidase. Mokuzai Gakkai Shi, 34, 724-731.</Citation>
</Reference>
<Reference>
<Citation>Kondo, R., Sako, T., Iimori, T. and Imamura, H. (1990) Formation of glycosidic lignin-carbohydrate complex in the enzymatic dehydrogenative polymerization of coniferyl alcohol. Mokuzai Gakkai Shi, 36, 332-338.</Citation>
</Reference>
<Reference>
<Citation>Koshijima, T. and Watanabe, T. (2013) Association Between Lignin and Carbohydrates in Wood and Other Plant Tissues. Berlin Heidelberg: Springer-Verlag.</Citation>
</Reference>
<Reference>
<Citation>Lam, P.Y., Tobimatsu, Y., Takeda, Y., Suzuki, S., Yamamura, M., Umezawa, T. and Lo, C. (2017) Disrupting flavone synthase II alters lignin and improves biomass digestibility. Plant Physiol. 174, 972-985.</Citation>
</Reference>
<Reference>
<Citation>Lam, P.Y., Lui, A.C.W., Yamamura, M. et al. (2019) Recruitment of specific flavonoid B-ring hydroxylases for two independent biosynthesis pathways of flavone-derived metabolites in grasses. New Phytol. 223, 204-219.</Citation>
</Reference>
<Reference>
<Citation>Lan, W., Lu, F.C., Regner, M., Zhu, Y.M., Rencoret, J., Ralph, S.A., Zakai, U.I., Morreel, K., Boerjan, W. and Ralph, J. (2015) Tricin, a flavonoid monomer in monocot lignification. Plant Physiol. 167, 1284-1295.</Citation>
</Reference>
<Reference>
<Citation>Lawoko, M. (2013) Unveiling the structure and ultrastructure of lignin carbohydrate complexes in softwoods. Int. J. Biol. Macromol. 62, 705-713.</Citation>
</Reference>
<Reference>
<Citation>Le Roy, J., Huss, B., Creach, A., Hawkins, S. and Neutelings, G. (2016) Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants. Front. Plant Sci. 7, 735.</Citation>
</Reference>
<Reference>
<Citation>Mansfield, S.D., Kim, H., Lu, F. and Ralph, J. (2012) Whole plant cell wall characterization using solution-state 2D-NMR. Nat. Protoc. 7, 1579-1589.</Citation>
</Reference>
<Reference>
<Citation>Méchin, V., Baumberger, S., Pollet, B. and Lapierre, C. (2007) Peroxidase activity can dictate the in vitro lignin dehydrogenative polymer structure. Phytochemistry, 68, 571-579.</Citation>
</Reference>
<Reference>
<Citation>Meents, M.J., Watanabe, Y. and Samuels, A.L. (2018) The cell biology of secondary cell wall biosynthesis. Ann. Bot. 121, 1107-1125.</Citation>
</Reference>
<Reference>
<Citation>Miyagawa, Y., Kamitakahara, H. and Takano, T. (2013) Fractionation and characterization of lignin-carbohydrate complexes (LCCs) of Eucalyptus globulus in residues left after MWL isolation. Part II: Analyses of xylan-lignin fraction (X-L). Holzforschung, 67, 629-642.</Citation>
</Reference>
<Reference>
<Citation>Miyagawa, Y., Mizukami, T., Kamitakahara, H. and Takano, T. (2014) Synthesis and fundamental HSQC NMR data of monolignol β-glycosides, dihydromonolignol β-glycosides and p-hydroxybenzaldehyde derivative β-glycosides for the analysis of phenyl glycoside type lignin-carbohydrate complexes (LCCs). Holzforschung, 68, 747.</Citation>
</Reference>
<Reference>
<Citation>Moon, S.-J., Kwon, M., Choi, D., Won, K., Kim, Y.H., Choi, I.-G. and Choi, J.W. (2012) In vitro analysis of the monolignol coupling mechanism using dehydrogenative polymerization in the presence of peroxidases and controlled feeding ratios of coniferyl and sinapyl alcohol. Phytochemistry, 82, 15-21.</Citation>
</Reference>
<Reference>
<Citation>Morikawa, Y., Yoshinaga, A., Kamitakahara, H., Wada, M. and Takabe, K. (2010) Cellular distribution of coniferin in differentiating xylem of Chamaecyparis obtusa as revealed by Raman microscopy. Holzforschung, 64, 61-67.</Citation>
</Reference>
<Reference>
<Citation>Nishimura, H., Kamiya, A., Nagata, T., Katahira, M. and Watanabe, T. (2018) Direct evidence for α ether linkage between lignin and carbohydrates in wood cell walls. Sci. Rep. 8, 6538.</Citation>
</Reference>
<Reference>
<Citation>Perkins, M., Smith, R.A. and Samuels, L. (2019) The transport of monomers during lignification in plants: anything goes but how? Curr. Opin. Biotechnol. 56, 69-74.</Citation>
</Reference>
<Reference>
<Citation>Quideau, S. and Ralph, J. (1992) Facile large-scale synthesis of coniferyl, sinapyl, and p-coumaryl alcohol. J. Agric. Food Chem. 40, 1108-1110.</Citation>
</Reference>
<Reference>
<Citation>Ralph, J., Grabber, J.H. and Hatfield, R.D. (1995) Lignin-ferulate cross-links in grasses: active incorporation of ferulate polysaccharide esters into ryegrass lignins. Carbohydr. Res. 275, 167-178.</Citation>
</Reference>
<Reference>
<Citation>Ralph, J., Brunow, G., Harris, P.J., Dixon, R.A., Schatz, P.F. and Boerjan, W. (2008) Lignification: are lignins biosynthesized via simple combinatorial chemistry or via proteinaceous control and template replication. Rec. Adv. Polyphen. Res. 1, 36-66.</Citation>
</Reference>
<Reference>
<Citation>Ralph, J., Schatz, P.F., Lu, F., Kim, H., Akiyama, T. and Nelsen, S.F. (2009) Quinone methides in lignification. In Quinone Methides. (Rokita, S., ed). Hoboken: John Wiley & Sons Inc, pp. 385-420.</Citation>
</Reference>
<Reference>
<Citation>Ralph, J. (2010) Hydroxycinnamates in lignification. Phytochem. Rev. 9, 65-83.</Citation>
</Reference>
<Reference>
<Citation>Ralph, J., Lundquist, K., Brunow, G., Lu, F., Kim, H., Schatz, P.F., Marita, J.M., Hatfield, R.D., Ralph, S.A. and Christensen, J.H. (2004) Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids. Phytochem. Rev. 3, 29-60.</Citation>
</Reference>
<Reference>
<Citation>Rencoret, J., Gutiérrez, A., Nieto, L., Jiménez-Barbero, J., Faulds, C.B., Kim, H., Ralph, J., Martínez, Á.T. and del Río, J.C. (2011) Lignin composition and structure in young versus adult Eucalyptus globulus plants. Plant Physiol. 155, 667-682.</Citation>
</Reference>
<Reference>
<Citation>Rencoret, J., Neiva, D., Marques, G., Gutiérrez, A., Kim, H., Gominho, J., Pereira, H., Ralph, J. and del Río, J.C. (2019) Hydroxystilbene glucosides are incorporated into Norway spruce bark lignin. Plant Physiol. 180, 1310-1321.</Citation>
</Reference>
<Reference>
<Citation>Samuels, A., Rensing, K., Douglas, C., Mansfield, S., Dharmawardhana, D. and Ellis, B. (2002) Cellular machinery of wood production: differentiation of secondary xylem in Pinus contorta var. latifolia. Planta, 216, 72-82.</Citation>
</Reference>
<Reference>
<Citation>Savidge, R.A. (1989) Coniferin, a biochemical indicator of commitment to tracheid differentiation in conifers. Can. J. Bot. 67, 2663-2668.</Citation>
</Reference>
<Reference>
<Citation>Sawamura, K., Tobimatsu, Y., Kamitakahara, H. and Takano, T. (2017) Lignin functionalization through chemical demethylation: preparation and tannin-like properties of demethylated guaiacyl-type synthetic lignins. ACS Sus. Chem. Eng. 5, 5424-5431.</Citation>
</Reference>
<Reference>
<Citation>Simmons, T.J., Mortimer, J.C., Bernardinelli, O.D., Pöppler, A.-C., Brown, S.P., deAzevedo, E.R., Dupree, R. and Dupree, P. (2016) Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR. Nat. Commun. 7, 13902.</Citation>
</Reference>
<Reference>
<Citation>Suzuki, S., Suzuki, Y., Yamamoto, N., Hattori, T., Sakamoto, M. and Umezawa, T. (2009) High-throughput determination of thioglycolic acid lignin from rice. Plant Biotechnol. 26, 337-340.</Citation>
</Reference>
<Reference>
<Citation>Syrjänen, K. and Brunow, G. (2000) Regioselectivity in lignin biosynthesis. The influence of dimerization and cross-coupling. Perkin Trans. 1, 183-187.</Citation>
</Reference>
<Reference>
<Citation>Takano, T., Tobimatsu, Y., Hosoya, T., Hattori, T., Ohnishi, J., Takano, M., Kamitakahara, H. and Nakatsubo, F. (2006) Studies on the dehydrogenative polymerizations of monolignol β-glycosides. Part 1. Syntheses of monolignol β-glycosides, (E)-isoconiferin, (E)-isosyringin, and (E)-triandrin. J. Wood Chem. Technol. 26, 215-229.</Citation>
</Reference>
<Reference>
<Citation>Tarmadi, D., Tobimatsu, Y., Yamamura, M., Miyamoto, T., Miyagawa, Y., Umezawa, T. and Yoshimura, T. (2018) NMR studies on lignocellulose deconstructions in the digestive system of the lower termite Coptotermes formosanus Shiraki. Sci. Rep. 8, 1290.</Citation>
</Reference>
<Reference>
<Citation>Terashima, N. and Fukushima, K. (1988) Heterogeneity in formation of lignin-XI: an autoradiographic study of the heterogeneous formation and structure of pine lignin. Wood Sci. Technol. 22, 259-270.</Citation>
</Reference>
<Reference>
<Citation>Terashima, N., Atalla, R., Ralph, S., Landucci, L.L., Lapierre, C. and Monties, B. (1995) New preparations of lignin polymer models under conditions that approximate cell wall lignification. I. Synthesis of novel lignin polymer models and their structural characterization by 13C NMR. Holzforschung, 49, 521-527.</Citation>
</Reference>
<Reference>
<Citation>Terashima, N., Atalla, R., Ralph, S., Landucci, L., Lapierre, C. and Monties, B. (1996a) New preparations of lignin polymer models under conditions that approximate cell wall lignification. II. Structural characterization of the models by thioacidolysis. Holzforschung, 50, 9-14.</Citation>
</Reference>
<Reference>
<Citation>Terashima, N., Ralph, S.A. and Landucci, L.L. (1996b) New facile syntheses of monolignol glucosides; p-glucocoumaryl alcohol, coniferin and syringin. Holzforschung, 50, 151-155.</Citation>
</Reference>
<Reference>
<Citation>Terashima, N., Hafrén, J., Westermark, U. and VanderHart, D.L. (2002) Nondestructive analysis of lignin structure by NMR spectroscopy of specifically 13C-enriched lignins. Part 1. Solid state study of Ginkgo wood. Holzforschung, 56, 43-50.</Citation>
</Reference>
<Reference>
<Citation>Terashima, N., Kitano, K., Kojima, M., Yoshida, M., Yamamoto, H. and Westermark, U. (2009a) Nanostructural assembly of cellulose, hemicellulose, and lignin in the middle layer of secondary wall of ginkgo tracheid. J. Wood Sci. 55, 409-416.</Citation>
</Reference>
<Reference>
<Citation>Terashima, N., Akiyama, T., Ralph, S., Evtuguin, D., Neto, C.P., Parkås, J., Paulsson, M., Westermark, U. and Ralph, J. (2009b) 2D-NMR (HSQC) difference spectra between specifically 13C-enriched and unenriched protolignin of Ginkgo biloba obtained in the solution state of whole cell wall material. Holzforschung, 63, 379-384.</Citation>
</Reference>
<Reference>
<Citation>Terashima, N., Yoshida, M., Hafrén, J., Fukushima, K. and Westermark, U. (2012) Proposed supramolecular structure of lignin in softwood tracheid compound middle lamella regions. Holzforschung, 66, 907-915.</Citation>
</Reference>
<Reference>
<Citation>Terashima, N., Ko, C., Matsushita, Y. and Westermark, U. (2016) Monolignol glucosides as intermediate compounds in lignin biosynthesis. Revisiting the cell wall lignification and new 13C-tracer experiments with Ginkgo biloba and Magnolia liliiflora. Holzforschung, 70, 801-810.</Citation>
</Reference>
<Reference>
<Citation>Terrett, O.M. and Dupree, P. (2019) Covalent interactions between lignin and hemicelluloses in plant secondary cell walls. Curr. Opin. Biotechnol. 56, 97-104.</Citation>
</Reference>
<Reference>
<Citation>Tobimatsu, Y., Takano, T., Kamitakahara, H. and Nakatsubo, F. (2006) Studies on the dehydrogenative polymerizations of monolignol β-glycosides. Part 2: Horseradish peroxidase-catalyzed dehydrogenative polymerization of isoconiferin. Holzforschung, 60, 513-518.</Citation>
</Reference>
<Reference>
<Citation>Tobimatsu, Y., Takano, T., Kamitakahara, H. and Nakatsubo, F. (2008a) Studies on the dehydrogenative polymerizations of monolignol β-glycosides. Part 3: Horseradish peroxidase-catalyzed polymerizations of triandrin and isosyringin. J. Wood Chem. Technol. 28, 69-83.</Citation>
</Reference>
<Reference>
<Citation>Tobimatsu, Y., Takano, T., Kamitakahara, H. and Nakatsubo, F. (2008b) Studies on the dehydrogenative polymerizations (DHPs) of monolignol β-glycosides: Part 4. Horseradish peroxidase-catalyzed copolymerization of isoconiferin and isosyringin. Holzforschung, 62, 495-500.</Citation>
</Reference>
<Reference>
<Citation>Tobimatsu, Y., Takano, T., Kamitakahara, H. and Nakatsubo, F. (2008c) Studies on the dehydrogenative polymerization of monolignol β-glycosides: Part 5. UV spectroscopic monitoring of horseradish peroxidase-catalyzed polymerization of monolignol glycosides. Holzforschung, 62, 501-507.</Citation>
</Reference>
<Reference>
<Citation>Tobimatsu, Y., Takano, T., Kamitakahara, H. and Nakatsubo, F. (2010) Studies on the dehydrogenative polymerization of monolignol β-glycosides. Part 6: monitoring of horseradish peroxidase-catalyzed polymerization of monolignol glycosides by GPC-PDA. Holzforschung, 64, 173-181.</Citation>
</Reference>
<Reference>
<Citation>Tobimatsu, Y., Elumalai, S., Grabber, J.H., Davidson, C.L., Pan, X. and Ralph, J. (2012) Hydroxycinnamate conjugates as potential monolignol replacements: in vitro lignification and cell wall studies with rosmarinic acid. Chemsuschem, 5, 676-686.</Citation>
</Reference>
<Reference>
<Citation>Tobimatsu, Y., Chen, F., Nakashima, J., Escamilla-Treviño, L.L., Jackson, L., Dixon, R.A. and Ralph, J. (2013) Coexistence but independent biosynthesis of catechyl and guaiacyl/syringyl lignin polymers in seed coats. Plant Cell, 25, 2587-2600.</Citation>
</Reference>
<Reference>
<Citation>Tobimatsu, Y. and Schuetz, M. (2019) Lignin polymerization: how do plants manage the chemistry so well? Curr. Opin. Biotechnol. 56, 75-81.</Citation>
</Reference>
<Reference>
<Citation>Tobimatsu, Y., Takano, T., Umezawa, T. and Ralph, J. (2019) Solution-state multidimensional NMR of lignins: approaches and applications in Lignin. In Lignin: Biosynthesis, Functions, and Economic Significance (Lu, F. and Yue, F., eds). Hauppauge: Nova Science Publishers Inc., pp. 79-110.</Citation>
</Reference>
<Reference>
<Citation>Toikka, M., Sipilä, J., Teleman, A. and Brunow, G. (1998) Lignin-carbohydrate model compounds. Formation of lignin-methyl arabinoside and lignin-methyl galactoside benzyl ethers via quinone methide intermediates. J. Chem. Soc. Perkin Trans. 1, 3813-3818.</Citation>
</Reference>
<Reference>
<Citation>Tsuji, Y., Chen, F., Yasuda, S. and Fukushima, K. (2004) The behavior of deuterium-labeled monolignol and monolignol glucosides in lignin biosynthesis in angiosperms. J. Agric. Food Chem. 52, 131-134.</Citation>
</Reference>
<Reference>
<Citation>Tsuyama, T. and Takabe, K. (2014) Distribution of lignin and lignin precursors in differentiating xylem of Japanese cypress and poplar. J. Wood Sci. 60, 353-361.</Citation>
</Reference>
<Reference>
<Citation>Tsuyama, T. and Takabe, K. (2015) Coniferin β-glucosidase is ionically bound to cell wall in differentiating xylem of poplar. J. Wood Sci. 61, 438-444.</Citation>
</Reference>
<Reference>
<Citation>Tsuyama, T., Matsushita, Y., Fukushima, K., Takabe, K., Yazaki, K. and Kamei, I. (2019) Proton gradient-dependent transport of p-glucocoumaryl alcohol in differentiating xylem of woody plants. Sci. Rep. 9, 8900.</Citation>
</Reference>
<Reference>
<Citation>van Parijs, F.R.D., Morreel, K., Ralph, J., Boerjan, W. and Merks, R.M.H. (2010) Modeling lignin polymerization. I. Simulation model of dehydrogenation polymers. Plant Physiol. 153, 1332-1344.</Citation>
</Reference>
<Reference>
<Citation>Wen, J.-L., Xue, B.-L., Xu, F. and Sun, R.-C. (2012) Unveiling the structural heterogeneity of bamboo lignin by in situ HSQC NMR technique. BioEnerg. Res. 5, 886-903.</Citation>
</Reference>
<Reference>
<Citation>Wen, J.-L., Sun, S.-L., Xue, B.-L. and Sun, R.-C. (2013) Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology. Materials, 6, 359-391.</Citation>
</Reference>
<Reference>
<Citation>Yang, S., Yuan, T.-Q. and Sun, R.-C. (2016) Structural elucidation of whole lignin in cell walls of triploid of Populus tomentosa Carr. ACS Sus. Chem. Eng. 4, 1006-1015.</Citation>
</Reference>
<Reference>
<Citation>Yao, L., Chen, C., Zheng, X., Peng, Z., Yang, H. and Xie, Y. (2016) Determination of lignin-carbohydrate complexes structure of wheat straw using carbon-13 isotope as a tracer. BioResources, 11, 6692-6707.</Citation>
</Reference>
<Reference>
<Citation>Yoo, C.G., Meng, X., Pu, Y. and Ragauskas, A.J. (2020) The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: a comprehensive review. Bioresour. Technol. 301, 122784.</Citation>
</Reference>
<Reference>
<Citation>You, T.-T., Zhang, L.-M., Zhou, S.-K. and Xu, F. (2015) Structural elucidation of lignin-carbohydrate complex (LCC) preparations and lignin from Arundo donax Linn. Ind. Crops Prod. 71, 65-74.</Citation>
</Reference>
<Reference>
<Citation>Yuan, T.-Q., Sun, S.-N., Xu, F. and Sun, R.-C. (2011) Characterization of lignin structures and lignin-carbohydrate complex (LCC) linkages by quantitative 13C and 2D HSQC NMR spectroscopy. J. Agric. Food Chem. 59, 10604-10614.</Citation>
</Reference>
<Reference>
<Citation>Yue, P.-P., Hu, Y.-J., Fu, G.-Q., Sun, C.-X., Li, M.-F., Peng, F. and Sun, R.-C. (2018) Structural differences between the lignin-carbohydrate complexes (LCCs) from 2- and 24-month-old bamboo (Neosinocalamus affinis). Int. J. Mol. Sci. 19, 1.</Citation>
</Reference>
<Reference>
<Citation>Zhao, B.-C., Chen, B.-Y., Yang, S., Yuan, T.-Q., Charlton, A. and Sun, R.-C. (2017) Structural Variation of lignin and lignin-carbohydrate complex in Eucalyptus grandis × E. urophylla during its growth process. ACS Sus. Chem. Eng. 5, 1113-1122.</Citation>
</Reference>
<Reference>
<Citation>Zhang, T., Zhou, H., Fu, Y., Zhao, Y., Yuan, Z., Shao, Z., Wang, Z. and Qin, M. (2020) Short time hydrothermal treatment of poplar wood for production of lignin-derived polyphenol antioxidant. Chemsuschem, in press, https://doi.org/10.1002/cssc.202000534.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
<region>
<li>Région du Kansai</li>
</region>
<settlement>
<li>Kyoto</li>
</settlement>
<orgName>
<li>Université de Kyoto</li>
</orgName>
</list>
<tree>
<country name="Japon">
<region name="Région du Kansai">
<name sortKey="Miyagawa, Yasuyuki" sort="Miyagawa, Yasuyuki" uniqKey="Miyagawa Y" first="Yasuyuki" last="Miyagawa">Yasuyuki Miyagawa</name>
</region>
<name sortKey="Kamitakahara, Hiroshi" sort="Kamitakahara, Hiroshi" uniqKey="Kamitakahara H" first="Hiroshi" last="Kamitakahara">Hiroshi Kamitakahara</name>
<name sortKey="Lam, Pui Ying" sort="Lam, Pui Ying" uniqKey="Lam P" first="Pui Ying" last="Lam">Pui Ying Lam</name>
<name sortKey="Mizukami, Takahito" sort="Mizukami, Takahito" uniqKey="Mizukami T" first="Takahito" last="Mizukami">Takahito Mizukami</name>
<name sortKey="Sakurai, Sayaka" sort="Sakurai, Sayaka" uniqKey="Sakurai S" first="Sayaka" last="Sakurai">Sayaka Sakurai</name>
<name sortKey="Takano, Toshiyuki" sort="Takano, Toshiyuki" uniqKey="Takano T" first="Toshiyuki" last="Takano">Toshiyuki Takano</name>
<name sortKey="Tobimatsu, Yuki" sort="Tobimatsu, Yuki" uniqKey="Tobimatsu Y" first="Yuki" last="Tobimatsu">Yuki Tobimatsu</name>
<name sortKey="Tobimatsu, Yuki" sort="Tobimatsu, Yuki" uniqKey="Tobimatsu Y" first="Yuki" last="Tobimatsu">Yuki Tobimatsu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000186 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000186 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32623768
   |texte=   Possible mechanisms for the generation of phenyl glycoside-type lignin-carbohydrate linkages in lignification with monolignol glucosides.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32623768" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020